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Abstract: Spatially continuous estimates of forest aboveground biomass (AGB) are essential to
supporting the sustainable management of forest ecosystems and providing invaluable information
for quantifying and monitoring terrestrial carbon stocks. The launch of the Ice, Cloud, and land
Elevation Satellite-2 (ICESat-2) on September 15th, 2018 offers an unparalleled opportunity to assess
AGB at large scales using along-track samples that will be provided during its three-year mission.
The main goal of this study was to investigate deep learning (DL) neural networks for mapping AGB
with ICESat-2, using simulated photon-counting lidar (PCL)-estimated AGB for daytime, nighttime,
and no noise scenarios, Landsat imagery, canopy cover, and land cover maps. The study was carried
out in Sam Houston National Forest located in south-east Texas, using a simulated PCL-estimated
AGB along two years of planned ICESat-2 profiles. The primary tasks were to investigate and
determine neural network architecture, examine the hyper-parameter settings, and subsequently
generate wall-to-wall AGB maps. A first set of models were developed using vegetation indices
calculated from single-date Landsat imagery, canopy cover, and land cover, and a second set of models
were generated using metrics from one year of Landsat imagery with canopy cover and land cover
maps. To compare the effectiveness of final models, comparisons with Random Forests (RF) models
were made. The deep neural network (DNN) models achieved R2 values of 0.42, 0.49, and 0.50 for the
daytime, nighttime, and no noise scenarios respectively. With the extended dataset containing metrics
calculated from Landsat images acquired on different dates, substantial improvements in model
performance for all data scenarios were noted. The R2 values increased to 0.64, 0.66, and 0.67 for the
daytime, nighttime, and no noise scenarios. Comparisons with Random forest (RF) prediction models
highlighted similar results, with the same R2 and root mean square error (RMSE) range (15–16 Mg/ha)
for daytime and nighttime scenarios. Findings suggest that there is potential for mapping AGB using
a combinatory approach with ICESat-2 and Landsat-derived products with DL.

Keywords: photon-counting lidar; ICESat-2; forest aboveground biomass; deep learning; deep neural
networks; random forest; Landsat; mapping

1. Introduction

As forests continue to be altered and lost as a result of land use changes, among other causes,
it has become increasingly vital to monitor their structure and extent to better understand the
effects including those on the global carbon cycle and climate [1]. Up-to-date and accurate maps of
vegetation structure and forest aboveground biomass (AGB) support the sustainable management of
forest resources [2], can be used to estimate other terrestrial carbon components (e.g., belowground
biomass) [3], reduce uncertainties with carbon exchanges and the carbon budget [3], and facilitate
an improved understanding of the carbon cycle [1]. Light Detection And Ranging (lidar) remote
sensing technology and specifically airborne and spaceborne lidar, have demonstrated the capability
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of estimating and mapping AGB [4–6]. Lidar systems measure the travel time for an emitted pulse
of laser energy to reach the surface and then reflect back to the sensor, which facilitates a distance
measurement and subsequently, unique XYZ location of or near to the surface [7,8]. There are currently
two earth-orbiting lidars which were launched in 2018; the Advanced Topographic Laser Altimeter
System (ATLAS) onboard the Ice, Cloud and land Elevation Satellite (ICESat)-2 [9] and the Global
Ecosystem Dynamics Investigation (GEDI) lidar attached to the International Space Station (ISS) [10].
The data collected by these instruments may be used to estimate or derive forest vegetation parameters,
including canopy heights and AGB, and could therefore play a crucial role in assessing and monitoring
forest resources up to global scales [6].

ICESat-2 will operate between 88◦ north and south latitudes during its three-year mission and will
provide a nine times increase in spatial coverage than its predecessor [11], covering more of the earth’s
surface than GEDI which operates in mid latitudes, between 52◦ north and 52◦ south latitudes [12,13].
While ATLAS onboard ICESat-2 was primarily designed to determine changes in ice sheet elevation
and mass, it will provide information about vegetation that may be used to estimate AGB. ATLAS
is a photon counting system, operating in the visible wavelengths, at 532 nm [7]. It generates three
pairs of tracks, with each pair approximately 3.3 km apart and each track within a pair separated
by 90 m [11]. Lidar footprints are produced every 70 cm in the along-track direction and measure
approximately 14 m in diameter [14]. Given the unprecedented coverage and spatial detail from
ICESat-2, translating ICESat-2 measurements to AGB estimates would allow for large-scale AGB and
forest carbon assessments.

The variables derived from lidar data, particularly height metrics [15] and horizontal canopy
structure metrics such as canopy cover are related to the biomass reference data to estimate AGB [16].
As the first and only satellite lidar operating from 2003 to 2009, the Geoscience Laser Altimeter System
(GLAS) sensor aboard ICESat acquired data that was utilized to estimate AGB [17] and facilitated
the mapping of forest resources at global scales [5,18,19]. While satellite lidar, including ICESat-2
and GEDI, will not provide spatially comprehensive measurements, the availability of other remotely
sensed data, such as passive optical sensor data could be integrated to achieve a full coverage AGB
product. For instance, in a study by Hu et al. [5], a global wall-to-wall AGB product at 1 km resolution
was produced using a combination of GLAS data and Moderate Resolution Imaging Spectroradiometer
(MODIS) derived Normalized Difference Vegetation Index (NDVI) and land cover, and climatic and
topographic variables. The Random Forests (RF) algorithm was used to extrapolate GLAS parameters
and develop regression models with the spatially continuous variables. Chi et al. [4] also used RF
regression models to generate a nationwide wall-to-wall AGB map in China by extrapolating GLAS
footprint-estimated AGB and MODIS data.

RF [20] is a machine learning technique that has been widely used for producing spatially explicit
AGB estimates with multisource data [4,5,21]. The application of nonparametric machine learning
regression algorithms, such as RF, Support Vector Regression, and k-nearest neighbor have become
more predominant and demonstrate the ability to outperform popular parametric approaches used
with remotely sensed data, like multiple linear regression [22–24]. More recently, Deep Learning (DL)
has been highlighted as a feasible approach for handling complex data [25] with many examples in the
remote sensing literature focusing on classification and object detection tasks [26–28]. Few studies
utilize DL models for forest parameter estimation and mapping, although promising results with
lidar-derived variables have been reported [15]. For instance, Garcia-Gutierrez et al. [29] indicated that
auto-encoders increased the accuracy of multiple linear regression predictions by 15-30%. Shao et al. [15]
found that a DL model, specifically the stacked sparse auto-encoder model, outperformed multiple
stepwise linear regression, k-nearest neighbor, support vector machine, back propagation neural
network, and RF models, for estimating airborne lidar-derived AGB with variables from Landsat 8
Operational Land Imager and synthetic-aperture radar backscattering coefficients.

DL is a subset of machine learning that stems from cognitive and information theories which aim
to mimic the learning process of neurons in the human brain [25] (p. 24412). DL is the application of
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multi-neuron, multi-layer neural networks to learn data representations [25] (p. 24413). In a neural
network layer consisting of multiple nodes, each neuron is initiated with a different weight and neurons
simultaneously learn the input data [25]. The weights are updated based on a loss function and in the
case of multiple layers, each neuron learns from all the output from preceding layers. The use of deep
learning architectures to any type of data, including numerical, visual, and audio has propelled DL
to a dominant position for developing predictive systems [25]. Regression is one of the two primary
supervised learning tasks carried out with DL, with classification being the second [25] and more
popular task undertaken [30]. Deep neural networks (DNNs) in particular, are capable of extracting
combinations of the input that are not easily described by humans [30] (p. 338). Given the capabilities
of DL and increasing amounts data from remote sensing systems, including current and upcoming
space lidar missions, DL models could be investigated for the modeling and mapping AGB and other
forest structural parameters.

One of ICESat-2′s data products is ATL08 or Land-Vegetation along-track product which will
consist of terrain heights, canopy heights, and canopy cover estimates for non-polar regions covered
by the satellite [9,31]. Estimates will be provided at a step-size of 100 m in the along-track direction,
referred to as a segment, and the data will be used as input to generate gridded heights and canopy
cover products or ATL18 after the three-year mission [11,31]. Several studies have demonstrated the
use of satellite lidar (GLAS) data for mapping forests [4–6,19,32–34] and fewer studies have compared
techniques for modeling AGB with space lidar [35]. However, literature focused on ICESat-2 data for
vegetation studies [7,14,36–39] is limited, including studies aimed at exploring approaches for AGB
mapping with the data or its products [40].

Over the next two years, ICESat-2 will sample the earth’s surface to provide a grid of
measurements [11] (p. 269) that will enable the estimation of forest attributes. Rather than waiting for
data, this study investigated an approach for mapping AGB using simulated ICESat-2 data over two
years of preplanned track locations and Landsat data, in preparation for utilizing the actual data for
vegetation studies as soon as it becomes available. Given the growing interest in DL [25] and potential
of DNNs [30], a methodology for mapping aboveground biomass (AGB) using regression-based
feedforward neural network models was explored. Even though the topology of a neural network
substantially affects the results [41], the optimum numbers of layers and nodes are not automatically
selected. Thus, a primary objective of this study was to investigate parameter settings that would
yield optimum predictive performance, specifically the number of hidden neurons and hidden
layers as well learning rates. Acknowledging expected differences in noise levels associated with
daytime and nighttime operation of ATLAS and associated impacts on canopy height estimation [39],
an examination of AGB mapping under different data scenarios was carried out. Thus, parameter
tuning was undertaken separately for each scenario and the best models were applied to generate the
AGB maps at 30 m spatial resolution. AGB maps were produced for the following data scenarios—(i)
daytime scenario, (ii) nighttime scenario, and (iii) without the impact of noise (no noise scenario).

2. Materials and Methods

2.1. Study Area

The study was carried out in Sam Houston National Forest (SHNF) located in south-east Texas,
USA (Latitude 30◦42′N, Longitude 95◦23′W). Elevations range from 62 m to 105 m, with an average
of 85 m [8]. Approximately 58% of the region or 80% of its forested area (NLCD classes—deciduous
forest, evergreen forest, mixed forest, and woody wetland) is classified as evergreen forests [42] and
the site is predominated by pine forests, which include Loblolly pine (Pinus taeda) plantations and old
growth Loblolly pine stands [8]. The planned ICESat-2 track locations for the first two years of the
mission over the study area [31] are depicted in Figure 1.
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Discrete return lidar data acquired in November 2010 over SHNF with a point density of four 
points per m2, were used to simulate ICESat-2′s photon-counting lidar (PCL) data. Planned track 
locations, ICESat-2 footprint generator and simulator were made available by the mission’s Science 
Team (ST). Footprints spaced 70 cm apart were generated along each planned ICESat-2 track and 
photons were simulated using the airborne lidar data. A detailed description of the PCL simulation 
is provided in Neuenschwander and Magruder [14]. To summarize, discrete return lidar points 
falling within each generated ICESat-2 footprint were used to generate a pseudo-waveform [43], a 
vector with heights or elevation was then constructed for each footprint, the number of photons 
based on design cases were randomly determined and random sampling of the height vector 
weighted by the pseudo-waveform was carried out [14]. The design cases for several land cover 
types were developed by the ICESat-2 instrument team to support model development for signal 
prediction [14] (p. 4). As a result, the average number of signal photons per shot was modeled at 1.9, 
based on the ATLAS performance model for temperate forests [44] and the algorithm returned up to 
three photons per 14-m diameter footprint.  

Anticipated noise photons, representative of solar background noise and effects of atmospheric 
scattering [45], were added to the simulated dataset. Two datasets were generated to represent the 

Figure 1. ICESat-2 tract locations overlaid on 2010 National Agriculture Imagery Program (NAIP)
aerial imagery within SHNF, Texas (inset map, upper left corner).

2.2. Simulated ICESat-2-Estimated AGB

Discrete return lidar data acquired in November 2010 over SHNF with a point density of four
points per m2, were used to simulate ICESat-2′s photon-counting lidar (PCL) data. Planned track
locations, ICESat-2 footprint generator and simulator were made available by the mission’s Science
Team (ST). Footprints spaced 70 cm apart were generated along each planned ICESat-2 track and
photons were simulated using the airborne lidar data. A detailed description of the PCL simulation is
provided in Neuenschwander and Magruder [14]. To summarize, discrete return lidar points falling
within each generated ICESat-2 footprint were used to generate a pseudo-waveform [43], a vector
with heights or elevation was then constructed for each footprint, the number of photons based on
design cases were randomly determined and random sampling of the height vector weighted by the
pseudo-waveform was carried out [14]. The design cases for several land cover types were developed
by the ICESat-2 instrument team to support model development for signal prediction [14] (p. 4).
As a result, the average number of signal photons per shot was modeled at 1.9, based on the ATLAS
performance model for temperate forests [44] and the algorithm returned up to three photons per 14-m
diameter footprint.

Anticipated noise photons, representative of solar background noise and effects of atmospheric
scattering [45], were added to the simulated dataset. Two datasets were generated to represent
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the following—(1) daytime scenario with expected noise levels for daytime operation of ICESat-2,
and (2) nighttime scenario with noise levels based on night operation of ICESat-2. Popescu et al. [39]
devised and applied novel noise filtering and photon classification algorithms to simulated ICESat-2
data and reported average RMSE values of 2.70 m and 3.59 m for estimating canopy heights with
nighttime and daytime scenarios respectively. PCL data processing algorithms developed by Popescu
et al. [39] were applied to the data to remove noise photons and classify photons into top of canopy
points and ground surface elevation points; subtracting the latter from the former yielded tree canopy
height values within footprints. Another PCL simulation using above-ground-level heights was carried
out and no noise photons were added to the data. In total, data for three scenarios were analyzed;
(1) daytime scenario, (2) nighttime scenario, and (3) no noise scenario. Real ICESat-2 data became
available on 28th May 2019, but planned tracks will be collected throughout the satellite mission.
For a visual comparison, Figure 2 shows real ICESat-2 data and simulated PCL data over similar pine
forests in Texas. At the time of this writing, real data was not available over SHNF. The purpose of
this visual comparison is to offer insights into the performance of the photon classification and noise
removal algorithm with real data, which was used to process the simulated PCL data used for this
study. The focus of this study is on developing the use of DL methods with PCL type and structure
that will be provided in the near future by the ICESat-2 mission.
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Figure 2. (a) Actual ICESat-2 data over pine forests in Texas; (b) Filtered and classified ICESat-2 data
over pine forests in Texas; (c) Filtered and classified simulated ICESat-2 data in SHNF.

Data representative of ICESat-2′s ATL08 product was used for modeling relationships with
spatially coincident airborne-lidar derived AGB. To maintain consistency with the ATL08 format,
100 m segments were extracted from the simulated datasets and height percentiles, canopy cover, and
canopy density metrics were calculated [38]. The utilization of the simulated ICESat-2 PCL vegetation
product for estimating AGB and airborne lidar-derived canopy cover are presented in Narine et al. [38].
To summarize, linear regression models relating simulated PCL metrics for a subset of the segments
(n = 85) to airborne lidar-derived AGB were developed and their performance was assessed with a
separate test set (n = 36). AGB models yielded RMSEs of 25.35 Mg/ha, 19.23 Mg/ha, and 19.16 Mg/ha
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and R2 values of 0.63, 0.79, and 0.79 for the daytime scenario, nighttime scenario, and no noise scenario
respectively [38].

Using AGB models developed with the simulated PCL vegetation product over SHNF, AGB
density (Mg/ha) was estimated for each segment over the study site and applied to 30 m pixels to match
Landsat TM pixels, as described in Narine et al. [40]. AGB was assigned based on the portion of a 100 m
segment across a pixel and the value was extrapolated to represent the pixel size using the estimated
area of a segment across a pixel. Segments less than 7 m in a pixel were excluded from analysis and
the average pixel AGB was calculated in instances where there were two segments (parts) of equal
lengths traversing a pixel. The steps for assigning AGB density to pixels were repeated for each data
scenario using the corresponding prediction equation developed from linear regression analysis. Then,
70% of the data (pixels) was randomly assigned to the training dataset and the remaining 30% was
allotted to the test set and used for model evaluation [40]. The training and test sets for each scenario
consisted of 1448 and 620 30-m pixels respectively and were the same as data used in Narine et al. [40]
in order to facilitate the comparisons of DNN models with the RF approach implemented in that
study. The flowchart of steps executed to estimate AGB with simulated ICESat-2 data [38] and achieve
wall-to-wall AGB coverage using DNNs, is presented in Figure 3.
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2.3. Mapped Predictors

A Landsat 5 Thematic Mapper (TM) cloud-free scene encompassing the study site, from path/row
26/39 and acquired in November, 2010 was downloaded from U.S. Geological Survey (USGS) Earth
Explorer in GeoTIFF format and re-projected to UTM, WGS84, Zone 15N. The image was processed
in ENVI 5.5 to top-of-atmosphere (TOA) reflectance and vegetation indices were computed. Land
cover and canopy cover maps from the 2011 National Land Cover Database (NLCD) [42] were also
downloaded and georeferenced in the same projection as the Landsat TM image. The same predictor
variables used in Narine et al. [40] were also utilized in this study. Consequently, the six predictor
variables used for AGB modeling were:

• Spectral Metrics from Landsat 5 TM-

# Normalized Difference Vegetation Index (NDVI): (NIR − Red)/(NIR + Red)
# Enhanced Vegetation Index (EVI): 2.5 * ((NIR − Red)/(NIR + 6 * Red − 7.5 * Blue + 1))
# Soil Adjusted Vegetation Index (SAVI): ((NIR − Red)/(NIR + Red + 0.5)) * (1.5)
# Modified Soil Adjusted Vegetation Index (MSAVI): (2 * NIR + 1 − sqrt ((2 * NIR + 1)2

− 8 *
(NIR − Red)))/2

• NLCD 2011 land cover map
• NLCD 2011 US Forest Service tree canopy cover

With the potential to highlight vegetation changes during the start and end of the growing season,
the Landsat-derived NDVI is an important indicator that has demonstrated promise for monitoring
vegetation phenology across time and at regional scales [46]. To examine the impact on model
performance, one year of Landsat imagery, from 1st May 2010 to 30th April 2011, were downloaded
from USGS Earth Explorer and processed as before. The same Landsat-based vegetation metrics were
calculated for each processed image, then combined with land cover and tree canopy cover and used
for biomass prediction, resulting in an extended dataset containing a total of 94 variables. The extended
dataset was used to develop a second set of models for each scenario following the methods described
in Section 2.4., and the results were compared with models that utilized single-date imagery.

2.4. Deep Neural Networks (DNNs)

DL via neural networks is comprised of stacked layers that facilitate learning via successive layers
of representations of the input data [47] (p. 8). Essentially, a layer transforms the data, as specified
by weights, which are referred to as the parameters of the layer [47]. The process of learning entails
finding the optimum values of the weights in each layer of a neural network, which are adjusted by
an optimizer, based on the loss score. A loss function measures the difference between the observed
values and predictions from the neural network and adjustments with the optimizer serves to lower
the loss score [47]. The network weights are randomly initialized resulting in a high loss score but
are adjusted as each example (batch) is processed and iterated several times to produce weights that
lower the loss function [47] (p. 11). Essentially, the gradient of the loss, given the combination of
the weights, is computed and the parameters are subsequently moved to an extent defined by the
learning rate, to reduce the loss for the batch [47]. In terms of optimization, there are several methods
of reducing loss through gradient descent to improve network accuracy. An activation function can
also be added to each layer in the model, enabling the layer to learn non-linear transformations of
the data. In this study, modeling was done with Keras [47] with TensorFlow backend in R and data
visualization, with ArcGIS 10.4 software. For all neural network architectures developed, the Root
Mean Square Propagation (RMSProp) optimizer and rectified linear unit (ReLU) as the activation
function, which are regarded as good options for different tasks [47], were used. The activation function
g is applied element-wise defined by the function g(z) = max{0, z} [30,48]. Assuming h is a vector
of hidden units in a layer, then h = g

(
WTx + c

)
, where W are the weights of the transformation and
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c are the biases [48] (p. 168), such that each element in the hidden layer has a different weight and
bias parameter [49]. For all models, the loss function was defined with the mean squared error (MSE),
the learning rate was initially set to 0.001, and epochs and batch size were 100 and 32 respectively.

In terms of network topology, the first set of neural network models consisted of one input
layer with 6 neurons (one for each predictor) and one output node for the predicted AGB, and the
second set of models consisted of 94 neurons in the input layer. A primary task was to find the
number of neurons in the hidden layer and the number of hidden layers between the input and output
layers. The architecture of a neural network, specifically, the number of hidden layers and nodes are
critical [50] since this affects the ability to learn the data [49] and ultimately impacts the network’s
predictive capacity. A trial and error approach is common for determining network topology, while
studies have presented techniques for identifying an optimal network structure for specific applications.
For example, Doukim et al. [50] highlighted a course to fine search technique for determining the
number of hidden neurons in a multi-layer perceptron (feedforward) neural network for skin detection
from images. Doukim et al. [50] used a binary search, with hidden neurons set to 1, 2, 4, 8, 16, 32,
64, and 128 and then a sequential search around a specific range indicated by the binary search to
fine-tune the process of finding the number of hidden neurons that resulted in the smallest MSE. In this
study, a network structure consisting of 112 hidden neurons was used to construct a neural network
for skin detection. In another study, Guang-Bin [51] demonstrated that a two layer feedforward neural
network is sufficient for learning with minimal error and suggests that the number of nodes in the first
layer is given by: √

(m + 2)N + 2
√

N/(m + 2) (1)

And the number of hidden nodes in the second layer is defined by:

m
√

N/(m + 2) (2)

where N is the number of samples and m is the number of output neurons.
For comparison purposes, the equations for determining the number of hidden nodes in the first

and second hidden layers proposed by Guang-Bin [51] were applied to the training dataset, which
equates to a neural network with 98 neurons in the first layer and 20 hidden nodes in the second layer.
However, since determining the optimum network structure was crucial in order to understand the
applicability of deep architectures with simulated ICESat-2 data, the number of hidden neurons and
layers were also varied. Exploratory analysis involving gradual increases in the number of hidden
neurons in the first hidden layer (e.g., binary search in Doukim et al. [50]) did not result in substantial
changes in model performance. As a result, the number of neurons were varied in intervals of 20 up to
200 neurons and then in intervals of 100 with a maximum of 1000 hidden neurons in the first hidden
layer. The results from the application of each trained model to the separate test set were compared
using the RMSE and R2 values. Guang-Bin [51] proposed a neural network architecture consisting of a
large first hidden layer and a second hidden layer that is considerably narrower. To adopt this feature to
the network architecture for deeper models, successively narrow layers were applied. A second hidden
layer was added to the neural network that gave the highest R2 and lowest RMSE value in each scenario
and the number of neurons was varied in increments of 20 up to the number of hidden neurons in the
previous layer. Layers were added until there were no further improvements in model performance.

With the final selected network structure for each scenario, the learning rate used by the RMSProp
optimizer was changed from 0.001 to 0.1, 0.01, and 0.0001 [52] and model performance with the test set
were compared for each hyperparameter setting. Regarded as the most important hyperparameter of
DL algorithms [48] (p. 424), the learning rate affects the model’s capacity, as indicated by the model
error. Too large to too small learning rates could increase training error as well as training times in the
case where rates are too small and sub-optimal. Final models yielding the lowest RMSE and highest R2

for each scenario were used to generate AGB maps. Results were compared with RF models [40] for
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the three data scenarios and new RF models were developed with the extended dataset consisting of
94 predictors for comparisons with final DNN models generated with the same data. Consistent with
the implementation of RF described in Narine et al. [40], models were developed with the ModelMap
R package.

3. Results

An assessment of the first set of neural networks with six variables predicting simulated
PCL-estimated AGB for the daytime, nighttime, and no noise data scenarios, indicated models
with 300 hidden neurons, 600 hidden neurons, and 500 hidden neurons in the first hidden layer
performed best (Table 1). These models explained 40%, 47%, and 48% of the variance in simulated
PCL-estimated AGB with RMSEs of 19.90 Mg/ha, 19.72 Mg/ha, and 20.29 Mg/ha for the daytime,
nighttime, and no noise scenarios respectively. Incremental increases in the number of neurons in
the first hidden layer yielded R2 values ranging from 0.38 to 0.40, 0.45 to 0.47, and 0.46 to 0.48 with
the daytime, nighttime, and no noise scenarios. In comparison, using the formula proposed by
Guang-Bin [51], a DNN with 98 neurons in the first layer and 20 hidden nodes in the second layer
yielded a R2 and RMSE of 0.40 and 19.92 Mg/ha, 0.45 and 19.95 Mg/ha, and 0.47 and 20.27 Mg/ha for
the daytime, nighttime, and no noise scenarios respectively.

Table 1. Model performance with different number of neurons in the first hidden layer. For the model
with the lowest RMSE in each scenario, a second dense hidden layer was added.

Number of Neurons in
1st Hidden Layer

Daytime Scenario Nighttime Scenario No Noise Scenario

R2 RMSE (Mg/ha) R2 RMSE (Mg/ha) R2 RMSE (Mg/ha)

20 0.40 19.95 0.45 19.97 0.46 20.60
40 0.40 20.01 0.45 19.98 0.46 20.55
60 0.40 19.98 0.46 19.92 0.47 20.49
80 0.40 19.94 0.46 19.91 0.47 20.49
100 0.40 19.94 0.45 19.99 0.47 20.44
120 0.40 19.95 0.45 19.94 0.47 20.46
140 0.40 20.00 0.46 19.89 0.47 20.44
160 0.40 20.02 0.45 19.97 0.47 20.38
180 0.39 20.08 0.46 19.84 0.47 20.43
200 0.39 20.06 0.45 19.98 0.47 20.46
300 0.40 19.90 0.46 19.88 0.47 20.36
400 0.39 20.09 0.46 19.85 0.47 20.32
500 0.39 20.05 0.45 20.08 0.48 20.29
600 0.40 19.91 0.47 19.72 0.47 20.34
700 0.39 20.13 0.46 19.87 0.47 20.37
800 0.40 19.93 0.46 19.75 0.47 20.35
900 0.40 19.98 0.46 19.84 0.47 20.36

1000 0.38 20.27 0.45 20.00 0.48 20.30

To better understand the applicability of DNNs using simulated PCL-estimated AGB and predictors
consisting of Landsat spectral metrics, land cover and canopy cover, model performance from varying
the number of hidden neurons in each additional hidden layer were assessed and compared. With the
daytime scenario, a second hidden layer was added and the neurons were increased in increments of 20
to a maximum of 300 hidden neurons. The DNN consisting of 160 neurons in the second hidden layer
performed best, in terms of R2 and RMSE but the addition of a third hidden layer did not improve
model performance (Figure 4). With the nighttime scenario, a second hidden layer with hidden neurons
varied from 20 to 500 was investigated, leading to a DNN structure consisting of two hidden layers
with 600 in the first hidden layer and 400 in the second. The lowest reported RMSE corresponding to
the DNN with a third hidden layer is shown in Figure 4. However, a DNN with two hidden layers
achieved the best results. The best performing model with the no noise scenario consisted of five
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densely connected layers; one input layer, three hidden layers with 500, 300, and 60 neurons in the first,
second, and third hidden layers respectively, and one output layer. The DNNs with four hidden layers
did not result in better models (Figure 4).Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 19 
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Figure 4. Neural network structures for predicting AGB with the daytime, nighttime, and no
noise scenarios.

Findings from tuning the learning rate for each DNN (Table 2) resulted in models with the
parameter set to 0.0001 for the daytime and nighttime scenarios and 0.001 for the no noise scenario.
Substantial decreases in R2 were noted when the learning rate was increased to 0.01 and 0.1 indicating
an overall suitability of the 0.001 and 0.0001 level with the data. For example, with the DNN model for
the daytime scenario, the learning rate that was set to 0.0001 yielded the highest R2 and lowest RMSE
of 0.42 and 19.55 Mg/ha, while a learning rate of 0.1 resulted in a R2 of 0.25 and RMSE of 22.32 Mg/ha.
With the nighttime scenario, a change in the learning rate from 0.1 to 0.0001 increased the R2 value from
0.34 to 0.49. The model for the no noise scenario yielded a R2 and RMSE of 0.50 and 19.82 Mg/ha when
the learning rate was set to 0.001 or 0.0001, compared to 0.40 and 21.66 Mg/ha when the rate was 0.1.

Table 2. DNN model performance for the daytime and nighttime and no noise scenarios, for different
learning rates.

Daytime Scenario Model
Structure: 6-300-160-1

Nighttime Scenario Model
Structure: 6-600-400-1

No Noise Scenario Model
Structure: 6-500-300-60-1

Learning Rate R2 RMSE R2 RMSE R2 RMSE

0.1 0.25 22.32 0.34 22.01 0.40 21.66
0.01 0.39 20.17 0.45 20.02 0.41 21.48
0.001 0.42 19.57 0.48 19.42 0.50 19.82

0.0001 0.42 19.55 0.49 19.35 0.50 19.82

Scatterplots with simulated PCL-estimated AGB vs DNN predicted AGB (Figure 5) show the line
of best fit adjacent to the 1:1 line. However, the DNN models tended to underestimate AGB, where this
trend was most pronounced with the daytime scenario and least prominent with the no noise scenario.
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Figure 5. (a) Simulated PCL AGB estimated from linear regression vs DNN predicted AGB with test
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graph is the 1:1 line.

Models developed with the extended dataset consisting of 94 predictor variables, yielded
substantially better results and a comparison of DNN models with RF models produced with the same
data highlighted comparable predictive abilities (Table 3). Except for the no noise scenario, the R2

values were identical to RF models with six predictors [40] as well as models with 94 predictors and
the RMSEs were in the same range. In terms of DNNs, the R2 increased from 0.42 (p-value < 0.001),
0.49 (p-value < 0.001), and 0.50 (p-value < 0.001), to 0.64 (p-value < 0.001), 0.66 (p-value < 0.001), and
0.67 (p-value < 0.001) for the daytime, nighttime, and no noise scenarios respectively. The RMSEs
improved from 19.55 Mg/ha to 15.47 Mg/ha, 19.35 Mg/ha to 15.64 Mg/ha, and 19.82 Mg/ha to 16.09 Mg/ha
with daytime, nighttime, and no noise scenarios respectively. The final neural network model for the
daytime scenario consisted of 500 neurons in the first hidden layer and 160 neurons in the second
layer. The regression model for the nighttime scenario also used two hidden layers with 300 and
200 neurons in the first and second layer respectively while the final NN structure for the no noise
scenario consisted of one hidden layer with 500 neurons. For all the scenarios, a learning rate of 0.001
yielded the best results.
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Table 3. Comparison of RF predicted AGB with AGB predicted from DNN models under three
scenarios; no noise, daytime, and nighttime scenarios.

RF Model—6
Predictor Variables

RF Model—94
Predictor Variables

DNN Model—6
Predictor Variables

DNN Model—94
Predictor Variables

Scenario R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Daytime 0.42 19.69 Mg/ha 0.64 15.58 Mg/ha 0.42 19.55 Mg/ha 0.64 15.47 Mg/ha
Nighttime 0.49 19.30 Mg/ha 0.66 15.89 Mg/ha 0.49 19.35 Mg/ha 0.66 15.64 Mg/ha
No Noise 0.51 19.72 Mg/ha 0.68 15.93 Mg/ha 0.50 19.82 Mg/ha 0.67 16.09 Mg/ha

Wall-to-wall AGB predictions were obtained from the final DNN models with 94 predictor
variables for each data scenario. The average AGB predictions from maps (Figures 6–8) produced
with the trained DNN models for the daytime, nighttime, and no noise scenarios were 39.90 Mg/ha,
42.93 Mg/ha, and 44.78 Mg/ha respectively. Overall, the AGB maps correspond with vegetation patterns
in the study area with the southern portion of the site predominated by forests, primarily mature
pines, and lower AGB values in northern portions, which includes young pine stands. Higher AGB
values are evident in the map generated with the no noise scenario while lower AGB ranges are more
prevalent with the map for the daytime scenario. Maximum predicted AGB density for 30 m cells was
125.86 Mg/ha for the daytime scenario, 123.83 Mg/ha with the nighttime scenario, and 127.93 Mg/ha
with the no noise scenario. With the training data, average AGB were 51.21 Mg/ha, 52.24 Mg/ha, and
52.09 Mg/ha for the daytime, nighttime, and no noise scenarios respectively and the maximum values
were 139.61 Mg/ha, 119.75 Mg/ha, and 150.64 Mg/ha respectively.
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4. Discussion

With ICESat-2 already in operation, data will be available for meeting the mission’s science
objectives, one of which has a direct benefit to the ecosystem community [11]. The mission’s ATL08
product will provide canopy heights and canopy cover which will be used to produce global maps of
these attributes at the end of the mission [11,31]. The investigation of approaches for utilizing ICESat-2
data using simulated data could potentially offer a better understanding of how the data can be used
for vegetation studies, provide insights about the expected accuracies of techniques examined, and
potentially facilitate quick adoption using actual data. The relationship between simulated PCL metrics
from 100 m segments and reference airborne lidar-estimated AGB along ICESat-2 profiles over the
study site in SHNF was modeled in a previous study [38] and the resulting prediction equations were
applied to estimate AGB for the daytime, nighttime, and no noise scenarios. Using freely available
data, including satellite data, which offers global coverage, AGB estimates were up-scaled from 3% of
30 m pixels which comprise the area, to produce spatially explicit AGB coverage.

In this study, simulated PCL estimated AGB along two years of tracks over the study site were
used in synergy with spectral metrics derived from Landsat imagery and NLCD products to develop
regression-based, feed-forward neural network models for application to the rest of the study site.
Using six predictor variables, the final model for the daytime scenario consisted of four densely
connected layers; one input layer, two hidden layers, and one output layer. With the nighttime scenario,
the neural network consisted of two non-linear hidden layers and the neural network structure for
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the no noise scenario consisted of three hidden layers. These neural networks used fully connecting
layers and at least 300 neurons in the first hidden layer of each model, resulting in architectures
with hundreds of thousands of parameters or weights. Increasing the width of the neural networks
led to some improvements in terms of RMSEs with negligible differences in training time and with
added depth, the model performance improved with consistently better results from the nighttime
scenario than daytime scenario. One possible reason for the R2 values being less than expected could
be dissimilarities in the range of biomass represented in the test data and training data, as mentioned in
a biomass mapping study with neural networks by Foody et al. [53]. With more training data, the use
of a deeper architecture could be beneficial and likely improve results [35]. Another consideration
is the grid size chosen for upscaling AGB estimates to obtain spatially complete coverage, where
aggregating AGB to larger grid sizes may improve the relationships with predictors from optical
satellite data. For example, Li et al. [54] used lidar-derived height metrics to estimate AGB and then
combined lidar-derived estimates with vegetation indices from satellite imagery for regional AGB
mapping. A comparison of lidar-derived AGB and vegetation indices at different spatial resolutions,
specifically at 250 m, 500 m, and 1000 m emphasized higher correlations at coarser spatial resolution.
Li et al. [54] indicated that the increased correlation between lidar-derived AGB and vegetation indices
at the coarser resolutions were possibly due to minimization of the effects of spatial heterogeneity.

While additional training data representative of the range of AGB, including data in the test
set, may improve model accuracies, it is important to note that considerable improvements in model
performance were achieved with the integration of data from a year of Landsat imagery. Vegetation
indices, particularly EVI and NDVI, from repeat imagery facilitate the extraction of important
phenological information [46,55]. With the use of Landsat images acquired every 16 days, computed
vegetation indices from each may capture seasonal vegetation trends and as the results indicate,
demonstrate promise for estimating AGB with simulated ICESat-2 data. With free and open access to
Landsat imagery and given the available resolution, the data could potentially be used for achieving
spatially comprehensive coverage of forest biophysical parameters with real ICESat-2 data. In terms of
model structure with the extended dataset, the final models consisted of two hidden layers for the
daytime and nighttime scenarios and one hidden layer with 500 neurons for the no noise scenario.
Additional layers of representation to the final selected network structures did not improve model
performance and the findings demonstrate that the DNN models for all the data scenarios yielded
results that were comparable to RF models.

A comparison of different learning rates for selected model structures revealed apparent differences
in reported R2 values and RMSEs. In one study, comparison of learning rates using a regression-based,
deep auto-encoder model with two hidden layers for gene expression prediction yielded MSEs ranging
from 0.289 to 0.292, with the best results attributed to the model with the highest learning rate; 0.1 [52].
The learning rates investigated were 0.1, 0.01, 0.001, 0.0001, and 0.00001. Conversely, findings from
this study emphasized the importance of the lowest learning rates investigated (0.001 and 0.0001) for
predicting AGB in each data scenario and with highest RMSE and lowest R2 values corresponding to
DNNs when the learning rates were set to 0.1.

The use of RF has been successfully demonstrated in the literature for mapping AGB with
data from ICESat-2′s predecessor [4], but with the ability to handle large, complex datasets, DL
algorithms could be explored for generating a spatially explicit AGB product from an integration
of multi-source data, including GEDI, ICESat-2, satellite optical imagery, and radar data with other
ancillary data. For instance, a combination of predicted AGB density from GEDI and ICESat-2 data
could be combined with mapped variables derived from Landsat data, for generating a wall-to-wall
AGB map. With current and upcoming space-based vegetation missions like NASA-ISRO Synthetic
Aperture Radar (NISAR) [56] and the European Space Agency P-band radar BIOMASS mission [57],
the volume of data that can potentially provide rich insights about the world’s forests will grow
considerably and DL models could play a larger role in predicting forest attributes. Given new data
from satellite sensors and multiple, open-source DL frameworks (e.g., TensorFlow), DL architectures
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for predicting AGB can be explored more extensively. Future work could entail an examination and
comparison of multiple DL techniques, like the stacked sparse auto-encoder model [15], autoregressive
neural network [58], and recurrent neural network [59], for producing a wall-to-wall AGB product
with ICESat-2 and other satellite remote sensing data. Finally, limited examples of DL models for
estimating forest biophysical parameters in the literature suggest the need for further research to better
understand or identify potential benefits from DL for forest mapping applications.

5. Conclusions

In this study, an approach for mapping AGB was developed by integrating simulated
PCL-estimated AGB with Landsat imagery, NLCD canopy cover, and land cover using DNNs.
The effect of network structure and learning rate on model performance were evident with the latter
having sizeable impacts on the reported error metrics. Noteworthy is the substantial improvements
in biomass prediction models from using one year of Landsat data. Given the continuity of Landsat
and available resolution for deriving valuable vegetation metrics every 16 days, the data could be
leveraged to characterize vegetation and better understand phenological trends over large areas.
Findings with simulated PCL-estimated data along ICESat-2 profiles, especially with the nighttime
scenario (R2 = 0.66), highlight the potential for generating a wall-to-wall AGB product with ICESat-2
by adopting a synergistic approach with Landsat optical imagery, canopy cover, and land cover.
With limited examples of DL models for estimating forest biophysical parameters and given the
growing volumes of data from current space lidars and upcoming satellite missions and given the
learning capacity of DL, DL algorithms could be explored further in future research. In doing so,
multiple techniques for modeling AGB and other forest structural parameters could be implemented
and compared.
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